[vc_row][vc_column][vc_column_text]
The RFID module adopts Philips MFRC522 original chip card read circuit design, easy to use, cost low, it is applicable to the equipment development, card reader development and other advanced application users which users need rf card terminal design/production. This module can be directly into the various card reader mold. Module uses the voltage of 3.3 V, with SPI interface simple lines which can be directly connected to any CPU mainboard communication of the user, can ensure the module stable and reliable work, reading long distance, support card types: mifare1 S50, mifare1 S70, mifare UltraLight, mifare Pro, mifare Desfire etc.[/vc_column_text][/vc_column][/vc_row][vc_row][vc_column width=”1/1″][vc_tour][vc_tab title=”RC522 introduce” tab_id=”1418136275-1-61″][vc_column_text]MF RC522 is applied to the 13.56 MHz non-contact communication high integration read and write card chip, it is the NXP company launched a non-contact read and write card chip for ‘three tables’ which is low voltage/low cost and small voltage, it is the best choice for intelligent instrument and a portable handheld device development. MF RC522 use the advance concept of the modulation and demodulation, fully integrates all types of passive non-contact communicate method and protocol under 13.56Mhz. Support 14443A compatible transponder signal. Digital part process ISO14443A frame and error detection. In addition, it also supports fast CRYPT01 encryption algorithm, language validation MIFARE series products. MFRC522 support MIFARE series more high-speed contactless communication, two-way data transfer rate is as high as 424 kbit/s.As 13.56 MHz high integration, speaking, reading and writing are the new members of card series chips family. There are quite a few similarities between MF RC522 , MF RC500 and MF RC530, they also have their own special characteristics and differences. It adopts the SPI mode to communicate between the hosts, is beneficial to reduce the attachment, smaller the PCB size and reduce the cost.[/vc_column_text][/vc_tab][vc_tab title=”Product parameter” tab_id=”1418136275-2-8″][vc_column_text]Working current: 13-26 ma/dc 3.3 V
The idle current: 10-13 ma/dc 3.3 V
Sleep current: < 80 ua
Peak current: < 30 ma
Operating frequency: 13.56 MHz
Product physical properties: size: 40 mm x 60 mm
Working environment temperature: – 20-80 degrees centigrade
Environmental storage temperature: 40-85 – c
Environmental relative humidity: 5% – 5% relative humidity
Communications: SPI (the biggestdata transmission rate:10 mbit/s)[/vc_column_text][/vc_tab][vc_tab title=”Hardware Prepare” tab_id=”1418138018958-2-1″][vc_column_text]
- 1 x PcDuino3
1 x RFID RC522
Male – female x7 dupont line
1 x e RFID tag ( Comply with the describe above)
[/vc_column_text][/vc_tab][vc_tab title=”Test Code” tab_id=”1418138019989-3-10″][vc_column_text]
#include "core.h" #define uchar unsigned char #define uint unsigned int //data array maxium length #define MAX_LEN 16 ///////////////////////////////////////////////////////// //set the pin //////////////////////////////////////////////////////// #define _CS 10 #define _SCK 13 #define _MOSI 11 #define _MISO 12 #define NRSTPD 9 //MF522 command bits #define PCD_IDLE 0x00 //NO action; cancel current commands #define PCD_AUTHENT 0x0E //verify password key #define PCD_RECEIVE 0x08 //receive data #define PCD_TRANSMIT 0x04 //send data #define PCD_TRANSCEIVE 0x0C //send and receive data #define PCD_RESETPHASE 0x0F //reset #define PCD_CALCCRC 0x03 //CRC check and caculation //Mifare_One card command bits #define PICC_REQIDL 0x26 //Search the cards that not into sleep mode in the antenna area #define PICC_REQALL 0x52 //Search all the cards in the antenna area #define PICC_ANTICOLL 0x93 //prevent conflict #define PICC_SElECTTAG 0x93 //select card #define PICC_AUTHENT1A 0x60 //verify A password key #define PICC_AUTHENT1B 0x61 //verify B password key #define PICC_READ 0x30 //read #define PICC_WRITE 0xA0 //write #define PICC_DECREMENT 0xC0 //deduct value #define PICC_INCREMENT 0xC1 //charge up value #define PICC_RESTORE 0xC2 //Restore data into buffer #define PICC_TRANSFER 0xB0 //Save data into buffer #define PICC_HALT 0x50 //sleep mode //THe mistake code that return when communicate with MF522 #define MI_OK 0 #define MI_NOTAGERR 1 #define MI_ERR 2 //------------------MFRC522 register --------------- //Page 0:Command and Status #define Reserved00 0x00 #define CommandReg 0x01 #define CommIEnReg 0x02 #define DivlEnReg 0x03 #define CommIrqReg 0x04 #define DivIrqReg 0x05 #define ErrorReg 0x06 #define Status1Reg 0x07 #define Status2Reg 0x08 #define FIFODataReg 0x09 #define FIFOLevelReg 0x0A #define WaterLevelReg 0x0B #define ControlReg 0x0C #define BitFramingReg 0x0D #define CollReg 0x0E #define Reserved01 0x0F //Page 1:Command #define Reserved10 0x10 #define ModeReg 0x11 #define TxModeReg 0x12 #define RxModeReg 0x13 #define TxControlReg 0x14 #define TxAutoReg 0x15 #define TxSelReg 0x16 #define RxSelReg 0x17 #define RxThresholdReg 0x18 #define DemodReg 0x19 #define Reserved11 0x1A #define Reserved12 0x1B #define MifareReg 0x1C #define Reserved13 0x1D #define Reserved14 0x1E #define SerialSpeedReg 0x1F //Page 2:CFG #define Reserved20 0x20 #define CRCResultRegM 0x21 #define CRCResultRegL 0x22 #define Reserved21 0x23 #define ModWidthReg 0x24 #define Reserved22 0x25 #define RFCfgReg 0x26 #define GsNReg 0x27 #define CWGsPReg 0x28 #define ModGsPReg 0x29 #define TModeReg 0x2A #define TPrescalerReg 0x2B #define TReloadRegH 0x2C #define TReloadRegL 0x2D #define TCounterValueRegH 0x2E #define TCounterValueRegL 0x2F //Page 3:TestRegister #define Reserved30 0x30 #define TestSel1Reg 0x31 #define TestSel2Reg 0x32 #define TestPinEnReg 0x33 #define TestPinValueReg 0x34 #define TestBusReg 0x35 #define AutoTestReg 0x36 #define VersionReg 0x37 #define AnalogTestReg 0x38 #define TestDAC1Reg 0x39 #define TestDAC2Reg 0x3A #define TestADCReg 0x3B #define Reserved31 0x3C #define Reserved32 0x3D #define Reserved33 0x3E #define Reserved34 0x3F //----------------------------------------------- //4 bytes Serial number of card, the 5 bytes is verfiy bytes uchar serNum[5]; void setup() { pinMode(_CS,OUTPUT); pinMode(_SCK,OUTPUT); pinMode(_MOSI,OUTPUT); pinMode(_MISO,INPUT); pinMode(NRSTPD,OUTPUT); // Not Reset and Power-down pinMode(NRSTPD,OUTPUT); // Set digital pin 5 , Not Reset and Power-down MFRC522_Init(); printf("RC522 testn"); } void loop() { uchar status; uchar str[MAX_LEN]; // Search card, return card types status = MFRC522_Request(PICC_REQIDL, str); if (status != MI_OK) { return; } //Show card type ShowCardType(str); //Prevent conflict, return the 4 bytes Serial number of the card status = MFRC522_Anticoll(str); // str[0..3]: serial number of the card // str[4]: XOR checksum of the SN. if (status == MI_OK) { printf("The card's number is: "); memcpy(serNum, str, 5); ShowCardID(serNum); } MFRC522_Halt(); //command the card into sleep mode delay(200); } /* * Function:ShowCardID * Description:Show Card ID * Input parameter:ID string * Return:Null */ void ShowCardID(uchar *id) { int IDlen=4; for(int i=0; i<IDlen; i++){ printf("%X",(0x0F & (id[i]>>4))); printf("%X",(0x0F & id[i])); } printf("n-------------------------n"); } /* * Function:ShowCardType * Description:Show Card type * Input parameter:Type string * Return:Null */ void ShowCardType(uchar* type) { printf("Card type: "); if(type[0]==0x04&&type[1]==0x00) printf("MFOne-S50n"); else if(type[0]==0x02&&type[1]==0x00) printf("MFOne-S70n"); else if(type[0]==0x44&&type[1]==0x00) printf("MF-UltraLightn"); else if(type[0]==0x08&&type[1]==0x00) printf("MF-Pron"); else if(type[0]==0x44&&type[1]==0x03) printf("MF Desiren"); else printf("Unknownn"); } /* * SPI read byte and write byte */ uchar SPIReadByte(void) { uchar SPICount; // Counter used to clock out the data uchar SPIData; SPIData = 0; for (SPICount = 0; SPICount < 8; SPICount++) // Prepare to clock in the data to be read { SPIData <<=1; // Rotate the data digitalWrite(_SCK,LOW);// Raise the clock to clock the data out of the MAX7456 if(digitalRead(_MISO)) { SPIData|=0x01; } digitalWrite(_SCK,HIGH); // Drop the clock ready for the next bit } // and loop back return (SPIData); // Finally return the read data } void SPIWriteByte(uchar SPIData) { uchar SPICount; // Counter used to clock out the data for (SPICount = 0; SPICount < 8; SPICount++) { if (SPIData & 0x80) { digitalWrite(_MOSI,HIGH); } else { digitalWrite(_MOSI,LOW); } digitalWrite(_SCK,LOW); SPIData <<= 1; digitalWrite(_SCK,HIGH); } } /* * Function:Write_MFRC5200 * Description:write a byte data into one register of MR RC522 * Input parameter:addr--register address;val--the value that need to write in * Return:Null */ void Write_MFRC522(uchar addr, uchar val) { digitalWrite(_CS, LOW); SPIWriteByte((addr<<1)&0x7E); SPIWriteByte(val); digitalWrite(_CS, HIGH); } /* * Function:Read_MFRC522 * Description:read a byte data into one register of MR RC522 * Input parameter:addr--register address * Return:return the read value */ uchar Read_MFRC522(uchar addr) { uchar val; digitalWrite(_CS, LOW); SPIWriteByte(((addr<<1)&0x7E)|0x80); val = SPIReadByte(); digitalWrite(_CS, HIGH); return val; } /* * Function:SetBitMask * Description:set RC522 register bit * Input parameter:reg--register address;mask--value * Return:null */ void SetBitMask(uchar reg, uchar mask) { uchar tmp; tmp = Read_MFRC522(reg); Write_MFRC522(reg, tmp | mask); // set bit mask } /* * Function:ClearBitMask * Description:clear RC522 register bit * Input parameter:reg--register address;mask--value * Return:null */ void ClearBitMask(uchar reg, uchar mask) { uchar tmp; tmp = Read_MFRC522(reg); Write_MFRC522(reg, tmp & (~mask)); // clear bit mask } /* * Function:AntennaOn * Description:Turn on antenna, every time turn on or shut down antenna need at least 1ms delay * Input parameter:null * Return:null */ void AntennaOn(void) { uchar temp; temp = Read_MFRC522(TxControlReg); if (!(temp & 0x03)) { SetBitMask(TxControlReg, 0x03); } } /* * Function:AntennaOff * Description:Turn off antenna, every time turn on or shut down antenna need at least 1ms delay * Input parameter:null * Return:null */ void AntennaOff(void) { ClearBitMask(TxControlReg, 0x03); } /* * Function:ResetMFRC522 * Description: reset RC522 * Input parameter:null * Return:null */ void MFRC522_Reset(void) { Write_MFRC522(CommandReg, PCD_RESETPHASE); } /* * Function:InitMFRC522 * Description:initilize RC522 * Input parameter:null * Return:null */ void MFRC522_Init(void) { digitalWrite(NRSTPD,HIGH); MFRC522_Reset(); //Timer: TPrescaler*TreloadVal/6.78MHz = 24ms Write_MFRC522(TModeReg, 0x8D); //Tauto=1; f(Timer) = 6.78MHz/TPreScaler Write_MFRC522(TPrescalerReg, 0x3E); //TModeReg[3..0] + TPrescalerReg Write_MFRC522(TReloadRegL, 30); Write_MFRC522(TReloadRegH, 0); Write_MFRC522(TxAutoReg, 0x40); //100%ASK Write_MFRC522(ModeReg, 0x3D); //CRC initilizate value 0x6363 ??? //ClearBitMask(Status2Reg, 0x08); //MFCrypto1On=0 //Write_MFRC522(RxSelReg, 0x86); //RxWait = RxSelReg[5..0] //Write_MFRC522(RFCfgReg, 0x7F); //RxGain = 48dB AntennaOn(); //turn on antenna } /* * Function:MFRC522_Request * Description:Searching card, read card type * Input parameter:reqMode--search methods, * TagType--return card types * 0x4400 = Mifare_UltraLight * 0x0400 = Mifare_One(S50) * 0x0200 = Mifare_One(S70) * 0x0800 = Mifare_Pro(X) * 0x4403 = Mifare_DESFire * return:return MI_OK if successed */ uchar MFRC522_Request(uchar reqMode, uchar *TagType) { uchar status; uint backBits; //the data bits that received Write_MFRC522(BitFramingReg, 0x07); //TxLastBists = BitFramingReg[2..0] ??? TagType[0] = reqMode; status = MFRC522_ToCard(PCD_TRANSCEIVE, TagType, 1, TagType, &backBits); if ((status != MI_OK) || (backBits != 0x10)) { status = MI_ERR; } return status; } /* * Function:MFRC522_ToCard * Description:communicate between RC522 and ISO14443 * Input parameter:command--MF522 command bits * sendData--send data to card via rc522 * sendLen--send data length * backData--the return data from card * backLen--the length of return data * return:return MI_OK if successed */ uchar MFRC522_ToCard(uchar command, uchar *sendData, uchar sendLen, uchar *backData, uint *backLen) { uchar status = MI_ERR; uchar irqEn = 0x00; uchar waitIRq = 0x00; uchar lastBits; uchar n; uint i; switch (command) { case PCD_AUTHENT: //verify card password { irqEn = 0x12; waitIRq = 0x10; break; } case PCD_TRANSCEIVE: //send data in the FIFO { irqEn = 0x77; waitIRq = 0x30; break; } default: break; } Write_MFRC522(CommIEnReg, irqEn|0x80); //Allow interruption ClearBitMask(CommIrqReg, 0x80); //Clear all the interrupt bits SetBitMask(FIFOLevelReg, 0x80); //FlushBuffer=1, FIFO initilizate Write_MFRC522(CommandReg, PCD_IDLE); //NO action;cancel current command ??? //write data into FIFO for (i=0; i<sendLen; i++) { Write_MFRC522(FIFODataReg, sendData[i]); } //procceed it Write_MFRC522(CommandReg, command); if (command == PCD_TRANSCEIVE) { SetBitMask(BitFramingReg, 0x80); //StartSend=1,transmission of data starts } //waite receive data is finished i = 2000; //i should adjust according the clock, the maxium the waiting time should be 25 ms??? do { //CommIrqReg[7..0] //Set1 TxIRq RxIRq IdleIRq HiAlerIRq LoAlertIRq ErrIRq TimerIRq n = Read_MFRC522(CommIrqReg); i--; } while ((i!=0) && !(n&0x01) && !(n&waitIRq)); ClearBitMask(BitFramingReg, 0x80); //StartSend=0 if (i != 0) { if(!(Read_MFRC522(ErrorReg) & 0x1B)) //BufferOvfl Collerr CRCErr ProtecolErr { status = MI_OK; if (n & irqEn & 0x01) { status = MI_NOTAGERR; //?? } if (command == PCD_TRANSCEIVE) { n = Read_MFRC522(FIFOLevelReg); lastBits = Read_MFRC522(ControlReg) & 0x07; if (lastBits) { *backLen = (n-1)*8 + lastBits; } else { *backLen = n*8; } if (n == 0) { n = 1; } if (n > MAX_LEN) { n = MAX_LEN; } //read the data from FIFO for (i=0; i<n; i++) { backData[i] = Read_MFRC522(FIFODataReg); } } } else { status = MI_ERR; } } //SetBitMask(ControlReg,0x80); //timer stops //Write_MFRC522(CommandReg, PCD_IDLE); return status; } /* * Function:MFRC522_Anticoll * Description:Prevent conflict, read the card serial number * Input parameter:serNum--return the 4 bytes card serial number, the 5th byte is recheck byte * return:return MI_OK if successed */ uchar MFRC522_Anticoll(uchar *serNum) { uchar status; uchar i; uchar serNumCheck=0; uint unLen; //ClearBitMask(Status2Reg, 0x08); //strSensclear //ClearBitMask(CollReg,0x80); //ValuesAfterColl Write_MFRC522(BitFramingReg, 0x00); //TxLastBists = BitFramingReg[2..0] serNum[0] = PICC_ANTICOLL; serNum[1] = 0x20; status = MFRC522_ToCard(PCD_TRANSCEIVE, serNum, 2, serNum, &unLen); if (status == MI_OK) { //Verify card serial number for (i=0; i<4; i++) { serNumCheck ^= serNum[i]; } if (serNumCheck != serNum[i]) { status = MI_ERR; } } //SetBitMask(CollReg, 0x80); //ValuesAfterColl=1 return status; } /* * Function:CalulateCRC * Description:Use MF522 to caculate CRC * Input parameter:pIndata--the CRC data need to be read,len--data length,pOutData-- the caculated result of CRC * return:Null */ void CalulateCRC(uchar *pIndata, uchar len, uchar *pOutData) { uchar i, n; ClearBitMask(DivIrqReg, 0x04); //CRCIrq = 0 SetBitMask(FIFOLevelReg, 0x80); //Clear FIFO pointer //Write_MFRC522(CommandReg, PCD_IDLE); //Write data into FIFO for (i=0; i<len; i++) { Write_MFRC522(FIFODataReg, *(pIndata+i)); } Write_MFRC522(CommandReg, PCD_CALCCRC); //waite CRC caculation to finish i = 0xFF; do { n = Read_MFRC522(DivIrqReg); i--; } while ((i!=0) && !(n&0x04)); //CRCIrq = 1 //read CRC caculation result pOutData[0] = Read_MFRC522(CRCResultRegL); pOutData[1] = Read_MFRC522(CRCResultRegM); } /* * Function:MFRC522_Write * Description:write block data * Input parameters:blockAddr--block address;writeData--Write 16 bytes data into block * return:return MI_OK if successed */ uchar MFRC522_Write(uchar blockAddr, uchar *writeData) { uchar status; uint recvBits; uchar i; uchar buff[18]; buff[0] = PICC_WRITE; buff[1] = blockAddr; CalulateCRC(buff, 2, &buff[2]); status = MFRC522_ToCard(PCD_TRANSCEIVE, buff, 4, buff, &recvBits); if ((status != MI_OK) || (recvBits != 4) || ((buff[0] & 0x0F) != 0x0A)) { status = MI_ERR; } if (status == MI_OK) { for (i=0; i<16; i++) //Write 16 bytes data into FIFO { buff[i] = *(writeData+i); } CalulateCRC(buff, 16, &buff[16]); status = MFRC522_ToCard(PCD_TRANSCEIVE, buff, 18, buff, &recvBits); if ((status != MI_OK) || (recvBits != 4) || ((buff[0] & 0x0F) != 0x0A)) { status = MI_ERR; } } return status; } /* * Function:MFRC522_Halt * Description:Command the cards into sleep mode * Input parameters:null * return:null */ void MFRC522_Halt(void) { uchar status; uint unLen; uchar buff[4]; buff[0] = PICC_HALT; buff[1] = 0; CalulateCRC(buff, 2, &buff[2]); status = MFRC522_ToCard(PCD_TRANSCEIVE, buff, 4, buff,&unLen); }
[/vc_column_text][/vc_tab][vc_tab title=”Run and test” tab_id=”1418138024317-4-1″][vc_column_text]
1. Hardware connection:
RC522 SDA –> pcDuino D10
RC522 SCK –> pcDuino D13
RC522 MOSI –> pcDuino D11
RC522 MISO –> pcDuino D12
RC522 RST –> pcDuino D9
RC522 3.3V –> pcDuino 3.3V
RC522 GND –> pcDuino GND
2.Download the test code, and run the code in Arduino IDE:
3. Run the code, put the tag to the sensing area of RC522 module, then you can read the card information:
Leave a Reply
You must be logged in to post a comment.