[vc_row][vc_column][vc_column_text]
This kit is designed to have the 4×7 segment display which displays the temperature mounted directly on the Arduino board. The
3-pin wire leads connect a thermistor to an analog pin on the Arduino. Once the Arduino is programmed, a 9-volt battery can supply
the power. The thermistor can be replaced with other types of sensors and the Arduino can be reprogrammed to display those sensor value readings.
[/vc_column_text][/vc_column][/vc_row][vc_row][vc_column width=”1/1″][vc_tour][vc_tab title=”Step 1: Parts list” tab_id=”1409042861-1-31″][vc_column_text]Thermistor
3-pin female with wire lead
10 k ohm resistor
Arduino mini pro
6-pin header
9-volt clip
9v battery
Required tools and part:
Sold and soldering iron
FTDI cable or FTDI breadout and USB cable (to program Arduino)
Arduino software
4 x 7 segment display (COM-09482)[/vc_column_text][/vc_tab][vc_tab title=”Step 2: Arduino Mini” tab_id=”1409042861-2-24″][vc_column_text]
Look at the Arduino and familiarize yourself with the orientation vocabulary used in these steps. This project uses the Arduino Mini Pro. Other arduino boards will be able to perform in this project but the mini allows for a compact design.[/vc_column_text][/vc_tab][vc_tab title=”Step 3: Power and Data connections” tab_id=”1409042976959-2-10″][vc_column_text]
The supply power, sensor power and data wire leads are connected in these pins from the back side of the arduino. The ground leads for the sensor and the power supply can be connected together and soldered into the GND pin. The power supply positive lead is soldered into the RAW pin. The sensor voltage lead is soldered into the VCC pin. The data lead is soldered into the A3 pin. Soldering them in through the back of the arduino will keep them from hindering the placement of the 7-segment display.[/vc_column_text][/vc_tab][vc_tab title=”Step 4: Sensor” tab_id=”1409042978666-3-2″][vc_column_text]
the thermistor/resistor module does not need to be soldered into the 3-pin clip. When inserted into the clip end of the 3-pin clip, the
bare thermistor leg should connect to the BLACK wire, the resistor leg should connect to the RED wire and the thermistor leg that has the resistor soldered should connect to the DATA wire (the DATA wire could be YELLOW, WHITE or even BLUE)
[/vc_column_text][/vc_tab][vc_tab title=”Step 5: Arduino Header Pins” tab_id=”1409044683815-4-0″][vc_column_text]
[/vc_column_text][/vc_tab][vc_tab title=”Step 6: 7-Segment Pins” tab_id=”1409044715372-5-7″][vc_column_text]
so it fits in the GND hole on the TOP FRONT of the Arduino.
[/vc_column_text][/vc_tab][vc_tab title=”Step 7: 7-Segment Ground Pin” tab_id=”1409044778119-6-9″][vc_column_text]
on the FRONT TOP of the Arduino.
[/vc_column_text][/vc_tab][vc_tab title=”Step 8: Program Arduino” tab_id=”1409044793732-7-6″][vc_column_text]
Connect your computer to the Arduino with your FTDI connection and upload the thermistor program (source program included here made up of parts taken from samples online)
int Ai5 = A5; int Value5; boolean hb = HIGH; int hbCNT = 0; int digit1 = 10; // 11; //PWM Display pin 1 int digit2 = 11; // 10; //PWM Display pin 2 int segD = 12; // A1; // 5; //Display pin 3 //not used 13; // pin 4 int segE = A0; // A0; //Display pin 5 int digit3 = A1; // 12; // 9; //PWM Display pin 6 int dp3 = A2; // 9; // 12; Step 11 - 7 segment BOTTOM Confirm the pins on the 7 segment display fit in the holes on the BOTTOM FRONT of the Arduino. int digit4 = A3; // 13; // 6; //PWM Display pin 8 int segB = 9; // 3; //Display pin 16 int segG = 8; //Display pin 15 int segA = 7; //5; // A1; //Display pin 14 int segC = 6; // 4; //Display pin 13 //not used 5; // pin 12 int segF = 4; // 7; // 7; //Display pin 11 int dphb = 3; // A3; pin 10 // GND // pin 9 void setup() { pinMode(segA, OUTPUT); pinMode(segB, OUTPUT); pinMode(segC, OUTPUT); pinMode(segD, OUTPUT); pinMode(segE, OUTPUT); pinMode(segF, OUTPUT); pinMode(segG, OUTPUT); pinMode(digit1, OUTPUT); pinMode(digit2, OUTPUT); pinMode(digit3, OUTPUT); pinMode(digit4, OUTPUT); pinMode(dp3, OUTPUT); pinMode(Ai5,INPUT); Serial.begin(9600); Serial.println(); } void loop() { //show temp displayNumber(Value5); //show heartbeat if (!(hbCNT % 100)) hb=!hb; //query temp if (hbCNT++ > 300) { hbCNT = 1; //store thermistor resistance value Value5 = analogRead(Ai5); //Read the value of AI1 (pin2) and write it to Value1 Serial.print(Value5); Serial.print(" [] "); Serial.print( 1000/(float(1023 / float(Value5)) -1)); float steinhart, average; average = 1023 / float(Value5) - 1; average = 10000 / average; steinhart = average / 1000; // (R/Ro) steinhart = log(steinhart); // ln(R/Ro) steinhart /= 3636; // 1/B * ln(R/Ro) steinhart += 1.0 / (25 + 273.15); // + (1/To) steinhart = 1.0 / steinhart; // Invert Serial.print(" [] "); Serial.print(average); Serial.print(" [k] "); Serial.print(steinhart);//kelvin Serial.print("
[c][/c]
");//celcius steinhart -= 273.15; Serial.print(steinhart); Serial.print(" [f] ");//fahrn steinhart = steinhart * 9 / 5 + 32; Serial.print(steinhart); Serial.print(" ||| "); Value5 = steinhart*10; Serial.println(Value5); } } void displayNumber(int toDisplay) { #define DISPLAY_BRIGHTNESS 500 #define DIGIT_ON HIGH #define DIGIT_OFF LOW long beginTime = millis(); for(int digit = 4 ; digit > 0 ; digit--) { digitalWrite(dp3, HIGH); //Turn on a digit for a short amount of time switch(digit) { case 1: digitalWrite(digit1, DIGIT_ON); break; case 2: digitalWrite(digit2, DIGIT_ON); break; case 3: digitalWrite(digit3, DIGIT_ON); digitalWrite(dp3, !hb); break; case 4: digitalWrite(digit4, DIGIT_ON); break; } digitalWrite(dphb, !hb); //Turn on the right segments for this digit lightNumber(toDisplay % 10); toDisplay /= 10; delayMicroseconds(DISPLAY_BRIGHTNESS); //Display this digit for a fraction of a second (between 1us and 5000us, 500 is pretty good) //Turn off all segments lightNumber(10); //Turn off all digits digitalWrite(digit1, DIGIT_OFF); digitalWrite(digit2, DIGIT_OFF); digitalWrite(digit3, DIGIT_OFF); digitalWrite(digit4, DIGIT_OFF); } while( (millis() - beginTime) < 10) ; //Wait for 20ms to pass before we paint the display again } //Given a number, turns on those segments //If number == 10, then turn off number void lightNumber(int numberToDisplay) { #define SEGMENT_ON LOW #define SEGMENT_OFF HIGH switch (numberToDisplay){ case 0: digitalWrite(segA, SEGMENT_ON); digitalWrite(segB, SEGMENT_ON); digitalWrite(segC, SEGMENT_ON); digitalWrite(segD, SEGMENT_ON); digitalWrite(segE, SEGMENT_ON); digitalWrite(segF, SEGMENT_ON); digitalWrite(segG, SEGMENT_OFF); break; case 1: digitalWrite(segA, SEGMENT_OFF); digitalWrite(segB, SEGMENT_ON); digitalWrite(segC, SEGMENT_ON); digitalWrite(segD, SEGMENT_OFF); digitalWrite(segE, SEGMENT_OFF); digitalWrite(segF, SEGMENT_OFF); digitalWrite(segG, SEGMENT_OFF); break; case 2: digitalWrite(segA, SEGMENT_ON); digitalWrite(segB, SEGMENT_ON); digitalWrite(segC, SEGMENT_OFF); digitalWrite(segD, SEGMENT_ON); digitalWrite(segE, SEGMENT_ON); digitalWrite(segF, SEGMENT_OFF); digitalWrite(segG, SEGMENT_ON); break; case 3: digitalWrite(segA, SEGMENT_ON); digitalWrite(segB, SEGMENT_ON); digitalWrite(segC, SEGMENT_ON); digitalWrite(segD, SEGMENT_ON); digitalWrite(segE, SEGMENT_OFF); digitalWrite(segF, SEGMENT_OFF); digitalWrite(segG, SEGMENT_ON); break; case 4: digitalWrite(segA, SEGMENT_OFF); digitalWrite(segB, SEGMENT_ON); digitalWrite(segC, SEGMENT_ON); digitalWrite(segD, SEGMENT_OFF); digitalWrite(segE, SEGMENT_OFF); digitalWrite(segF, SEGMENT_ON); digitalWrite(segG, SEGMENT_ON); break; case 5: digitalWrite(segA, SEGMENT_ON); digitalWrite(segB, SEGMENT_OFF); digitalWrite(segC, SEGMENT_ON); digitalWrite(segD, SEGMENT_ON); digitalWrite(segE, SEGMENT_OFF); digitalWrite(segF, SEGMENT_ON); digitalWrite(segG, SEGMENT_ON); break; case 6: digitalWrite(segA, SEGMENT_ON); digitalWrite(segB, SEGMENT_OFF); digitalWrite(segC, SEGMENT_ON); digitalWrite(segD, SEGMENT_ON); digitalWrite(segE, SEGMENT_ON); digitalWrite(segF, SEGMENT_ON); digitalWrite(segG, SEGMENT_ON); break; case 7: digitalWrite(segA, SEGMENT_ON); digitalWrite(segB, SEGMENT_ON); digitalWrite(segC, SEGMENT_ON); digitalWrite(segD, SEGMENT_OFF); digitalWrite(segE, SEGMENT_OFF); digitalWrite(segF, SEGMENT_OFF); digitalWrite(segG, SEGMENT_OFF); break; case 8: digitalWrite(segA, SEGMENT_ON); digitalWrite(segB, SEGMENT_ON); digitalWrite(segC, SEGMENT_ON); digitalWrite(segD, SEGMENT_ON); digitalWrite(segE, SEGMENT_ON); digitalWrite(segF, SEGMENT_ON); digitalWrite(segG, SEGMENT_ON); break; case 9: digitalWrite(segA, SEGMENT_ON); digitalWrite(segB, SEGMENT_ON); digitalWrite(segC, SEGMENT_ON); digitalWrite(segD, SEGMENT_ON); digitalWrite(segE, SEGMENT_OFF); digitalWrite(segF, SEGMENT_ON); digitalWrite(segG, SEGMENT_ON); break; case 10: digitalWrite(segA, SEGMENT_OFF); digitalWrite(segB, SEGMENT_OFF); digitalWrite(segC, SEGMENT_OFF); digitalWrite(segD, SEGMENT_OFF); digitalWrite(segE, SEGMENT_OFF); digitalWrite(segF, SEGMENT_OFF); digitalWrite(segG, SEGMENT_OFF); break; } }
[/vc_column_text][/vc_tab][/vc_tour][/vc_column][/vc_row]
Leave a Reply
You must be logged in to post a comment.